
CC BY-SA

© 2025 Released under the CC BY-SA license

1

CS 4530: Fundamentals of Software Engineering
Lesson 2.5
Testing Integrated Software Systems

Rob Simmons

Khoury College of Computer Sciences

https://creativecommons.org/licenses/by-sa/4.0/

2

Software interacts with an environment

Mo

2

Database

The SUT

Human User

Network, Time,
Randomness

3

Remove unnecessary parts of environment

Mo

Database

The SUT

Tests
replace

user
interaction

Network, Time,
Randomness

Test the appropriate connection points

The SUT

Tests
replace

user
interaction

describe('GET /api/user/:id', () => {
 it('should 404 for nonexistent users', async () => {
 response = await supertest(app).get(`/api/user/${randomUUID().toString()}`);
 expect(response.status).toBe(404);
 expect(response.body).toStrictEqual({ error: 'User not found' });
 });

 it('should return existing users', async () => {
 response = await supertest(app).get(`/api/user/user1`);
 expect(response.status).toBe(200);
 expect(response.body).toStrictEqual({ ...user1, createdAt: expect.anything() });

Test the appropriate connection points

The SUTTests
replace

user
interaction

Controller

Service

Repository

describe('GET /api/user/:id', () => {
 it('should 404 for nonexistent users', async () => {
 response = await supertest(app).get(`/api/user/${randomUUID().toString()}`);
 expect(response.status).toBe(404);
 expect(response.body).toStrictEqual({ error: 'User not found' });
 });

 it('should return existing users', async () => {
 response = await supertest(app).get(`/api/user/user1`);
 expect(response.status).toBe(200);
 expect(response.body).toStrictEqual({ ...user1, createdAt: expect.anything() });

Test the appropriate connection points

The SUT
Tests replace
service-layer
interaction

Controller

Service

Repository

describe('enforceAuth', () => {
 it('should return a user and id on good auth', async () => {
 const user = await enforceAuth({ username: 'user1', password: 'pwd1' });
 expect(user).toStrictEqual({
 _id: expect.any(Types.ObjectId),
 username: 'user1’,
 });
 });

 it('should raise on bad auth', async () => {
 await expect(

Test the appropriate connection points

Tests replace
service-layer
interaction

Controller

Service

Repository Mo

Network, Time,
Randomness

Database

Control easy-to-control parts of environment

Tests replace
service-layer
interaction

Controller

Service

Repository Mo

In-memory
database,
resets after
each test

beforeAll(async () => {
 mongo = await MongoMemoryServer.create();
 const uri = mongo.getUri();
 await connect(uri);
});

beforeEach(async () => {
 await populateMongo();
});

afterEach(async () => {
 await clearMongo();

Network, Time,
Randomness

Hijack hard-to-control parts of environment

Tests replace
service-layer
interaction

Controller

Service

Repository Mo

In-memory
database,
resets after
each test

Network, Time,
Randomness

10

Break for live coding

Test Doubles

• The in-memory Mongo database is a test double for a production
database that doesn’t die when you restart the server

• Supertest is a test double for HTTP server architecture

• Pre-determined coin flip is the test double for the random coin flip

• The spied-on coin flip is the test double for the not-spied-on coin flip,
kinda?

• Terminology (mocks, spies, stubs, fakes, dummies) is an inconsistent
mess, though many individuals have described consistent and useful
categorizations

Test Doubles Have Weaknesses

• Some failures may occur purely at the
integration between components:
• The test may assume wrong behavior (wrongly

encoded by mock)
• Higher fidelity mocks can help, but still just a

snapshot of the real world

• Test doubles can be brittle:
• Spies expect a particular usage of the test

double;
• The test is "brittle" because it depends on

internal behavior of SUT;

• Potential maintenance burden: as SUT
evolves, mocks must evolve.

Not just its IO

behavior, but

also its

dependencies

Did we correctly

model the

behavior of

httpbin?

13

Break for more live coding

What’s the endgame here?

• We want to be able to get the system under test as
small as possible

• Fast (to write and to run and to understand)

• Independent from other parts of the system (unit test
failures pinpoint where the error is)

• Can help improve coverage (but beware the code that’s
only ever run in tests…)

• The endgame is unit testing

14

But some bugs are observable only when
multiple components interact.

• These are usually because one module
has made incorrect assumptions about
some other module

• Unit tests won’t reveal such bugs

• Mocks won’t help, either (since they may
incorporate our incorrect assumptions)

• So you really need integration tests
1 class of 1 program
running on 1 server

1 program running on
1 server

Mork

UnitIntegration

Integration tests may be larger, even
enormous

• Does the presence of other
jobs on our server change the
behavior of our program?

• Does the presence of the
other servers change the
behavior of our program?

1 class of 1
program

running on 1
server

1 program
running on 1

server

Mork

UnitIntegration

1 web server
in a cluster
of 100,000

servers

1 class of one program

running on a web
server

1 process running on a

web server

Mork

UnitIntegration

1 web server in a

cluster of 100,000
1 Google product in the

entire Google
ecosystem

Integration tests can be done in many ways

• All at once ("Big Bang")

• Top-down

• Bottom-up

• Middle-out

• Top-Bottom-Middle

• etc., etc., etc.

How big is my test? Google’s Classification

• Small: run in a single thread, can’t sleep, perform I/O or
make blocking calls

• Medium: run on single computer, can use
processes/threads, perform I/O, but only contact
localhost

• Large: Everything else

"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O’Reilly)

From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-

engineering-
at/9781492082781/ch11.html#testing_overview

Testing Distribution (How much of each kind
of testing we should do?)

Pyramid
Test Pattern

Integration Tests can be Flaky

• Flaky test failures are false alarms

• Most common cause of flaky test failures:
“async wait” - tests that expect some
asynchronous action to occur within a
timeout

• UI Testing is often flaky and slower

• Good tests avoid relying on timing

• Good tests avoid relying on the order in which
the tests are run

[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]

Async Wait
37%

Test Order
Dependency

17%

Concurrency
17%

Resource Leak
10%

Network
9%

Time
4%

Random
3%

Floating Point
3%

Unordered
Collections

1%

Flaky Test Example: Async/Wait

• Most common root cause of flakiness

• Difficult to avoid, but there are mitigations:

• Have more “small” tests that don’t require
concurrency

• Ensure sufficient resources available for
running tests

• Embed reasonable error detection to classify
test failures as likely to be “flaky” vs true
failures Test fails!

Server startup
complete

Start server

Make request to
server

Wait 3 seconds for
server to start

Start Test

Too late!

22

We make flaky tests anyway

- name: Test that the backend server starts
 run: |
 npm start -w=server & sleep 5
 echo "Checking if home page is served"
 curl --fail 'http://localhost:8000/' > /dev/null 2>&1

 echo "Checking if login page is served"
 curl --fail 'http://localhost:8000/login' > /dev/null 2>&1

 echo "Checking if api endpoint returns several threads"
 curl --fail 'http://localhost:8000/api/thread/list' 2> /dev/null | jq 'if length < 4 then error("Too few posts returned from api") else . end'

	Slide 1: CS 4530: Fundamentals of Software Engineering Lesson 2.5 Testing Integrated Software Systems
	Slide 2: Software interacts with an environment
	Slide 3: Remove unnecessary parts of environment
	Slide 4: Test the appropriate connection points
	Slide 5: Test the appropriate connection points
	Slide 6: Test the appropriate connection points
	Slide 7: Test the appropriate connection points
	Slide 8: Control easy-to-control parts of environment
	Slide 9: Hijack hard-to-control parts of environment
	Slide 10: Break for live coding
	Slide 11: Test Doubles
	Slide 12: Test Doubles Have Weaknesses
	Slide 13: Break for more live coding
	Slide 14: What’s the endgame here?
	Slide 15: But some bugs are observable only when multiple components interact.
	Slide 16: Integration tests may be larger, even enormous
	Slide 17: Integration tests can be done in many ways
	Slide 18: How big is my test? Google’s Classification
	Slide 19: Testing Distribution (How much of each kind of testing we should do?)
	Slide 20: Integration Tests can be Flaky
	Slide 21: Flaky Test Example: Async/Wait
	Slide 22: We make flaky tests anyway

