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Remove unnecessary parts of environment
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Test the appropriate connection points
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describe('GET /api/user/:id', () => {
  it('should 404 for nonexistent users', async () => {
    response = await supertest(app).get(`/api/user/${randomUUID().toString()}`);
    expect(response.status).toBe(404);
    expect(response.body).toStrictEqual({ error: 'User not found' });
  });

  it('should return existing users', async () => {
    response = await supertest(app).get(`/api/user/user1`);
    expect(response.status).toBe(200);
    expect(response.body).toStrictEqual({ ...user1, createdAt: expect.anything() });
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  it('should return existing users', async () => {
    response = await supertest(app).get(`/api/user/user1`);
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describe('enforceAuth', () => {
  it('should return a user and id on good auth', async () => {
    const user = await enforceAuth({ username: 'user1', password: 'pwd1' });
    expect(user).toStrictEqual({
      _id: expect.any(Types.ObjectId),
      username: 'user1’,
    });
  });

  it('should raise on bad auth', async () => {
    await expect(
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Control easy-to-control parts of environment
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beforeAll(async () => {
  mongo = await MongoMemoryServer.create();
  const uri = mongo.getUri();
  await connect(uri);
});

beforeEach(async () => {
  await populateMongo();
});

afterEach(async () => {
  await clearMongo();

Network, Time, 
Randomness



Hijack hard-to-control parts of environment
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Break for live coding



Test Doubles

• The in-memory Mongo database is a test double for a production 
database that doesn’t die when you restart the server

• Supertest is a test double for HTTP server architecture

• Pre-determined coin flip is the test double for the random coin flip

• The spied-on coin flip is the test double for the not-spied-on coin flip, 
kinda?

• Terminology (mocks, spies, stubs, fakes, dummies) is an inconsistent 
mess, though many individuals have described consistent and useful 
categorizations



Test Doubles Have Weaknesses

• Some failures may occur purely at the 
integration between components:
• The test may assume wrong behavior (wrongly 

encoded by mock)
• Higher fidelity mocks can help, but still just a 

snapshot of the real world

• Test doubles can be brittle:
• Spies expect a particular usage of the test 

double;
• The test is "brittle" because it depends on 

internal behavior of SUT;

• Potential maintenance burden: as SUT 
evolves, mocks must evolve.

Not just its IO 

behavior, but 

also its 

dependencies

Did we correctly 

model the 

behavior of 

httpbin?
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Break for more live coding



What’s the endgame here?

• We want to be able to get the system under test as 
small as possible

• Fast (to write and to run and to understand)

• Independent from other parts of the system (unit test 
failures pinpoint where the error is)

• Can help improve coverage (but beware the code that’s 
only ever run in tests…)

• The endgame is unit testing
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But some bugs are observable only when 
multiple components interact.

• These are usually because one module 
has made incorrect assumptions about 
some other module 

• Unit tests won’t reveal such bugs

• Mocks won’t help, either (since they may 
incorporate our incorrect assumptions)

• So you really need integration tests
1 class of 1 program 
running on 1 server

1 program running on 
1 server

Mork

UnitIntegration



Integration tests may be larger, even 
enormous

• Does the presence of other 
jobs on our server change the 
behavior of our program?

• Does the presence of the 
other servers change the 
behavior of our program?

1 class of 1
program 

running on 1 
server

1 program
running on 1 

server

Mork

UnitIntegration

1 web server 
in a cluster 
of 100,000 

servers

1 class of one program 

running on a web 
server

1 process running on a 

web server

Mork

UnitIntegration

1 web server in a 

cluster of 100,000
1 Google product in the 

entire Google 
ecosystem



Integration tests can be done in many ways

• All at once ("Big Bang")

• Top-down

• Bottom-up

• Middle-out

• Top-Bottom-Middle

• etc., etc., etc.



How big is my test? Google’s Classification

• Small: run in a single thread, can’t sleep, perform I/O or 
make blocking calls

• Medium: run on single computer, can use 
processes/threads, perform I/O, but only contact 
localhost

• Large: Everything else

"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O’Reilly)



From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-

engineering-
at/9781492082781/ch11.html#testing_overview

Testing Distribution (How much of each kind 
of testing we should do?)

Pyramid
Test Pattern



Integration Tests can be Flaky

• Flaky test failures are false alarms

• Most common cause of flaky test failures: 
“async wait” - tests that expect some 
asynchronous action to occur within a 
timeout

• UI Testing is often flaky and slower

• Good tests avoid relying on timing

• Good tests avoid relying on the order in which 
the tests are run

[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]
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Flaky Test Example: Async/Wait

• Most common root cause of flakiness

• Difficult to avoid, but there are mitigations:

• Have more “small” tests that don’t require 
concurrency

• Ensure sufficient resources available for 
running tests

• Embed reasonable error detection to classify 
test failures as likely to be “flaky” vs true 
failures Test fails!

Server startup 
complete

Start server

Make request to 
server

Wait 3 seconds for 
server to start

Start Test

Too late!
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We make flaky tests anyway

- name: Test that the backend server starts
  run: |
    npm start -w=server & sleep 5
    echo "Checking if home page is served"
    curl --fail 'http://localhost:8000/' > /dev/null 2>&1

    echo "Checking if login page is served"
    curl --fail 'http://localhost:8000/login' > /dev/null 2>&1

    echo "Checking if api endpoint returns several threads"
    curl --fail 'http://localhost:8000/api/thread/list' 2> /dev/null | jq 'if length < 4 then error("Too few posts returned from api") else . end'
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